Reciprocal roles of DBC1 and SIRT1 in regulating estrogen receptor α activity and co-activator synergy

نویسندگان

  • Eun Ji Yu
  • Seok-Hyung Kim
  • Kyu Heo
  • Chen-Yin Ou
  • Michael R. Stallcup
  • Jeong Hoon Kim
چکیده

Estrogen receptor α (ERα) plays critical roles in development and progression of breast cancer. Because ERα activity is strictly dependent upon the interaction with coregulators, coregulators are also believed to contribute to breast tumorigenesis. Cell Cycle and Apoptosis Regulator 1 (CCAR1) is an important co-activator for estrogen-induced gene expression and estrogen-dependent growth of breast cancer cells. Here, we identified Deleted in Breast Cancer 1 (DBC1) as a CCAR1 binding protein. DBC1 was recently shown to function as a negative regulator of the NAD-dependent protein deacetylase SIRT1. DBC1 associates directly with ERα and cooperates synergistically with CCAR1 to enhance ERα function. DBC1 is required for estrogen-induced expression of a subset of ERα target genes as well as breast cancer cell proliferation and for estrogen-induced recruitment of ERα to the target promoters in a gene-specific manner. The mechanism of DBC1 action involves inhibition of SIRT1 interaction with ERα and of SIRT1-mediated deacetylation of ERα. SIRT1 also represses the co-activator synergy between DBC1 and CCAR1 by binding to DBC1 and disrupting its interaction with CCAR1. Our results indicate that DBC1 and SIRT1 play reciprocal roles as major regulators of ERα activity, by regulating DNA binding by ERα and by regulating co-activator synergy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis

Human DBC1 (Deleted in Breast Cancer 1; KIAA1967; CCAR2) is a protein implicated in the regulation of apoptosis, transcription and histone modifications. Upon DNA damage, DBC1 is phosphorylated by ATM/ATR on Thr454 and this modification increases its inhibitory interaction with SIRT1, leading to p53 acetylation and p53-dependent apoptosis. Here, we report that the inhibition of SIRT1 by DBC1 in...

متن کامل

DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage.

Human DBC1 (deleted in breast cancer-1; KIAA1967) is a nuclear protein that, in response to DNA damage, competitively inhibits the NAD(+)-dependent deacetylase SIRT1, a regulator of p53 apoptotic functions in response to genotoxic stress. DBC1 depletion in human cells increases SIRT1 activity, resulting in the deacetylation of p53 and protection from apoptosis. However, the mechanisms regulatin...

متن کامل

Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice.

The enzyme sirtuin 1 (SIRT1) is a critical regulator of many cellular functions, including energy metabolism. However, the precise mechanisms that modulate SIRT1 activity remain unknown. As SIRT1 activity in vitro was recently found to be negatively regulated by interaction with the deleted in breast cancer-1 (DBC1) protein, we set out to investigate whether DBC1 regulates SIRT1 activity in viv...

متن کامل

Estrogenic Activity of Some Phytoestrogens on Bovine Oxytocin and Thymidine Kinase-ERE Promoter through Estrogen Receptor-α in MDA-MB 231 Cells

Background: Phytoestrogens, a group of plant-derived polyphenolic compounds have recently come into considerable attention due to the increasing information on their potential adverse effects in human health. Some of phytoestrogens show estrogenic activity that may be carcinogenic for human. In the present study, we investigated the transcriptional effects of variety of phytoestrogens&nbsp...

متن کامل

The Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study

Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011